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A frequency-domain approach to bifurcations in control systems
with saturation

J. ARACIL{, E. PONCE{ and T. AíLAMO{

Bifurcation analysis of nonlinear control systems supplies a global perspective of the
system behaviour modes. In this paper, it is shown that this analysis can be implemented
with very elementary and classical tools, such as frequency-domain graphical methods.
The methodology proposed is illustrated analysing the e� ects of a saturation non-
linearity on a system designed with a linear control law. The full morphology of quali-
tative behaviours and of polar plots for two-dimensional systems is displayed, pointing
out how bifurcations give rise to the boundaries between regions with di� erent quali-
tative behaviour modes. Also a case of a three-dimensional system is analysed.

1. Introduction

In some control applications, there naturally arises the
question of studying the e� ects of saturation on the
global behaviour of the system while it remains locally
stable around the equilibrium point (the operating
point). This kind of situation exempli® es the e� ects of
nonlinearities on systems designed with linear methods.
Control systems with nonlinearities give rise to non-
linear dynamical systems. The dynamical behaviour of
such systems is much richer and more complicated than
that of linear systems. Nonlinear systems display two
main di� erences from the linear systems.

(i) They can show multiple steady regimes, and not
only the point attractor associated with the operat-
ing point, as happens in linear systems.

(ii) They can exhibit long-term behaviours that are
more complex than point attractors, such as limit
cycles and chaotic attractors.

The search for these more complex behaviours is the
goal of the qualitative analysis of nonlinear systems, and
especially of bifurcation theory (Guckenheimer and
Holmes 1983, Hale and KocË ak 1991, Kuznetsov 1995) .

Applications of the bifurcation theory are now very
common in all branches of engineering (Nayfeh and
Balachandran 1995, Strogatz 1995) . These analysis
techniques are becoming relevant for nonlinear control
systems (Abed et al. 1996, Aracil et al. 1998a) . With
these tools, the system behaviour can be analysed not
only considering the neighbourhood around the equi-
librium point, as is traditionally done with linear
methods, but also taking into account the whole
state space.

Problems related to bifurcations in control systems
have attracted attention for a long time (Mehra et al.
1977) . Recently, the bifurcation analysis of nonlinear
control systems has become more widespread.
However, the applications appearing in scienti® c litera-
ture normally use more sophisticated mathematical
approaches than those control specialists are used to.
For instance, in a previous paper, Ponce et al. (1996)
applied the results of Llibre and Ponce (1996), and
Llibre and Sotomayor (1996) to the analysis of bi-
furcations in the class of linear control systems where
saturation has been added. The results of these papers
help to classify the system di� erent behaviour modes. In
particular, it is shown that bifurcations at in® nity can
give rise to an unstable limit cycle or to a pair of saddle
points that state the limited attraction basin of the
resulting nonlinear system. However, these results were
presented in a rather mathematical language that is not
commonly used by the control specialist. In this paper,
the same kind of analysis and results are developed in
the frequency domain, which is much more familiar to
the designers of control systems.
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The frequency response of nonlinear feedback control
systems has usually been investigated with the describing
function method (Mees 1981, Vidyasagar 1993, Khalil
1996) . Under dissipativeness assumptions, some oscilla-
tion criteria also lying on frequency methods have been
given by Leonov et al. (1996) . Working in the frequency
domain also has the advantage of its graphical character
that gives a geometrical insight to the results, which is
most appreciated by many systems designers.
Applications of describing function methods to the
bifurcation analysis of nonlinear control systems have
already been reported (Mees 1981, Fukuma et al. 1984,
Moiola and Chen 1993, 1996). Similar results to those
developed here can be found in the work of SuaÂ rez et al.
(1996). The methodology here employed is related to
that in the papers by Genesio and Tesi (1992), Tesi et
al. (1996), Alvarez and Curiel (1997), Alvarez et al.
(1997) and Basso et al. (1997). However, the papers by
Alvarez and Curiel and by Alvarez et al. deal mostly
with detecting local bifurcations or with chaotic
behaviour, whereas here the emphasis is on the global
behaviour modes displayed by closed-loop, locally
stable systems (those of practical interest), and especially
how the bifurcations giving rise to the boundaries
between regions of di� erent qualitative behaviour can
be detected using only frequency-domain transfer
functions. In this way a classi® cation of these
behaviours and a global perspective on them can be
reached.

In this paper a concrete case of nonlinear system is
analysed: the control system formed by a linear system
with an actuator that saturates. It can be argued that the
results reported here have practical interest only for low-
order systems. However, the practitioner engineer is
used to work with reduced order models (the dominant
poles), that are mostly second- or third-order systems.
Also, saturation is an almost universal characteristic of
practical actuators. So interest in the case is enough
to deserve attention. Moreover, the methodology
employed in the analysis is easily generalized to cover
a wider class of systems.

On the other hand, another well-known result
(Tarbouriech and Burgat 1997) that is also emphasized
in this paper is the fact that unstable plants with satur-
ating actuators give rise to closed-loop systems that are
only locally stable. This is a particular case of the most
general case of controlling unstable systems, which is a
crucial point in control systems engineering. This
requires respect for the unstable, as claimed by Stein
(1989).

The remainder of this paper is organized as follows.
In the next section, the structure of a linear control
system with saturation in the feedback path is stated.
Then the qualitative analysis of the system is developed,
studying the equilibrium points and the limit cycles

that the system can display. The study of these di� erent
qualitative state portraits is related to the bifurcations
that state the boundaries between the di� erent behav-
iour regions. Then a section is included where the full
morphology of polar plots for two-dimensional systems
is described, also showing the bifurcations associated
with the transitions between regions of di� erent quali-
tative behaviour. A section follows where a three-dimen-
sional system is analysed. The paper is closed with
conclusions.

2. Qualitative analysis in the frequency domain of

stable closed-loop control systems with saturation

Consider the single input linear system in R n :

_x ˆ Ax ‡Bu;

where u 2 R , and …A ;B† is controllable, with a linear
control law u ˆ ¡Kx, which gives rise to a stable
closed-loop linear control system with the state descrip-
tion

_x ˆ …A ¡ BK†x:

The closed-loop system is equivalent to a system with
transfer function G…s† ˆ K…sI ¡ A†¡1B with unity feed-
back. In the realm of linear control systems theory, there
are many methods to obtain K in order to guarantee the
stability of the operating point, assuming that the pair
…A ;B† is controllable. In the linear case, this stability is
global.

However, the addition of nonlinearities (saturation,
dead zone, etc. ) can dramatically modify this situation.
Suppose that a nonlinearity is included in the return
chain, as shown in ® gure 1, so that the new state descrip-
tion is

_x ˆ Ax ‡Bu ˆ Ax ¡ B’…Kx† ; …1†
where ’… :† stands for the nonlinearity characteristic.
Although a more general case can be considered, in
the following it will be assumed that ’… :† is an odd
function …’…y† ˆ ¡’…¡y†† that saturates in a monotonic
way, that is

lim
y!1 …’…y†

y †ˆ 0 ;
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Figure 1. System with a nonlinearity in the feedback path.



with ’…y†=y decreasing for y > 0. Without loss of gen-
erality, the slope of the nonlinearity at y ˆ 0 will be
supposed to be equal to one, that is ’

0…0† ˆ 1. The
problem at stake is to analyse how the addition of the
nonlinearity in¯ uences the global behaviour of the
closed-loop system. The nonlinearity, even if it does
not a� ect the stability of the operating point, can pro-
duce the appearance of new phenomena that do not
occur in the linear model (equilibria di� erent from the
origin, limit cycles, etc.).

The global behaviour of the control system in ® gure 1,
when the nonlinearity is the normalized saturation
(’…x† ˆ sgn…x† min fjxj;1g), can be studied with the
help of the results of previously mentioned papers
(Llibre and Ponce 1996, Llibre and Sotomayor 1996) .
Some of the results of these papers will be restated
here using for the most part frequency-domain tools.
The approach adopted in this paper di� ers from other
approaches that also use frequency-domain tools
(Genesio and Tesi 1992, Tesi et al. 1996, Alvarez and
Curiel 1997, Alvarez et al. 1997, Basso et al. 1997) in
that here we are not looking for all possible pathologies
but emphasize the classi® cation of global behaviours to
be expected in locally stable nonlinear control systems.

2.1. Equilibrium points analysis

The ® rst point is to realize that, with the addition of
the odd and saturated nonlinearity ’, the system
becomes nonlinear and may display several attractors.
Therefore, the search for equilibria other than the origin
should be undertaken.

The system equilibria are the points xe such that
_x ˆ 0. From (1) one obtains

Axe ˆ B’…Kxe†: …2†
Clearly, the origin is always a solution of (2) and its

linearization matrix remains equal to A ¡ BK. In
checking other possible solutions of (2) with x 6ˆ 0,
consider ® rst the case when det A ˆ 0. If Kxe 6ˆ 0, then
it is deduced that B 2 image A, which is in contradiction
with the controllability of the system and the sup-
position of det A ˆ 0. It can be concluded that, if
xe 6ˆ 0 is an equilibrium point when det A ˆ 0, then
both Axe ˆ 0 and Kxe ˆ 0 hold, which would lead to
…A ¡ BK†xe ˆ 0. This possibility will be discarded,
because then det…A ¡ BK† ˆ 0 and so it does not corre-
spond to a stable closed-loop control design.

Assuming now that det A 6ˆ 0, from (2) it follows that

xe ˆ A¡1B’…Kxe† ;

and consequently

Kxe ˆ KA¡1B’…Kxe†
ˆ ¡G…0†’…Kxe† ;

where G…0† is the static gain of the open-loop system. As
a result, the equilibria correspond to the output values
ye ˆ Kxe that are solutions of the scalar equation

y ˆ ¡G…0†’…y†: …3†

This equation can be solved graphically, as shown in
® gure 2. The points E1, E2 and O where the straight
line ¡y=G…0† intersects the curve ’…y† correspond to
di� erent equilibria. The slope of the straight line is
· ˆ ¡1=G…0† and so it cuts the graph of ’…y† at
points other than the origin only if 0 < · < 1
…¡1 < G…0† < ¡1). When, for instance, the non-
linearity is the normalized saturation and G…0† < ¡1,
there will be three equilibria: the origin O and two
points E1 and E2 given by ’…ye† ˆ §1; that is

xe ˆ §A¡1B;

for these equilibria it is guaranteed that jyej ˆ jKxej ˆ
jG…0†j > 1.

By moving ·, one can pass from one to three equi-
libria; this phenomenon is called a pitchfork bifurca-
tion. In general, for saturated nonlinearities, the
following pitchfork bifurcations must be taken into
account.

(i) G…0† ˆ ¡1. In this case, the straight line ¡y=G…0† is
tangent to the nonlinearity at y ˆ 0 which results in
a pitchfork bifurcation P0 at the origin. By using the
identity

det…I ¡ A¡1BK† ˆ 1 ¡ KA¡1B

ˆ 1 ‡ G…0† ;

it is easy to see that

det…A ¡ BK† ˆ det ‰A…I ¡ A¡1BK†Š
ˆ ‰1 ‡G…0†Š det A:

Thus, if the system undergoes the pitchfork bifurca-
tion at G…0† ˆ ¡1 then a change of the stability of
the origin is produced.
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(ii) G…0† ˆ ¡1. In this case, the straight line ¡y=G…0†
is horizontal. Then the assumption that

lim
y!1

’…y†
y… † ˆ 0

monotonically assures the existence of two addi-
tional equilibria for any higher value of G…0†,
provided that G…0† > ¡1. These two equilibria
approach the origin as G…0† grows, which may
yield a reduction in the attraction basin at the
origin. The appearance of these two equilibria
from the in® nity will be called a pitchfork bifur-
cation P1 at in® nity and this phenomenon
does not require any stability change for the
origin.

2.2. Predicting limit cycles

Once the equilibrium points have been analysed, the
problem is to search for more complex attractors, as are
the limit cycles. The harmonic balance method can be
used for this search. Assume that the system in ® gure 1
has a limit cycle of frequency !. Then the signal y can be
expressed by the Fourier expansion y…t† ˆ P1

¡1 ak ejk!t,
and the output of the nonlinearity by ’…y† ˆP1

¡1 nk ejk!t. From these expansions the harmonic bal-
ance equations are obtained (Mees 1981, chapter 5) :

ak ‡G… jk!†nk ˆ 0; k ˆ 0 ;§1 ;§2 ; . . . : …4†
In most control applications with odd symmetry, a rea-
sonable approximation is reached considering only the
® rst order harmonic balance (k ˆ 1). It should be
recalled that the linear part G… j!† must be a low-pass
® lter. In this case, to predict limit cycles the following
equation must be solved:

1 ‡N…a†G… j!† ˆ 0; …5†
where N…a† ˆ n1=a1, a1 ˆ a, is the describing function
for the nonlinearity. It is well known that for an odd,
memoryless and monotonic saturating nonlinearity ’
the describing function N…a† is real, and that

0 ˆ N…1† 4 N…a† 4 m ˆ N…0† ;

where m ˆ ’
0…0† (Vidyasagar 1993).

The solutions of (5) can be obtained graphically with
a polar plot where G… j!† and ¡1=N…a† are represented.
Points where both curves intersect each other give
approximately the amplitude a and the frequency ! of
a possible limit cycle. The Loeb criterion to check
whether the limit cycle is stable or not is well
known (Cook 1994) . It should be remarked that the
relevant intersections are for ! > 0, while
intersections with ! ˆ 0, not considered in the
describing function method, correspond to the phenom-

enon already mentioned in } 2.1 of multiplicity of equi-
librium points.

The transition from a non-intersecting situation to an
intersecting situation is a meaningful measure of the
possibility of the appearance of a limit cycle and is gen-
erally associated with the so-called Hopf bifurcation.
Then, a Hopf bifurcation may take place when,
moving the parameters, the shape of the polar plot of
G… j!† changes from not cutting ¡1=N…a† to cutting it.
For the class of nonlinearities considered in this paper,
’

0…0† ˆ 1, which assures that N…0† ˆ 1. Therefore, a
Hopf bifurcation is produced just when G… j!† crosses
the point …¡1;0† on the complex plane, where
¡1=N…a† initiates on the right, but this should imply,
based on the Nyquist criterion, that the origin is no
longer stable.

On the other hand, owing to the saturated nature of
’, N…1† ˆ 0. This can lead to an interesting Hopf bifur-
cation that takes place when G… j!† starts to cross
¡1=N…a† not at the right boundary, as in the previous
paragraph, but at the left boundary, at in® nity, giving
rise to a large limit cycle coming from in® nity. This is
the Hopf bifurcation B1 at in® nity. Later, in } 3, it will
be discussed more deeply for two-dimensional systems.
All this is compatible with the stability of the origin and
it has been studied by Glover (1989), Llibre and Ponce
(1996, 1997) and Llibre and Sotomayor (1996). In that
case, even if the operating point remains stable, that
stability will no longer be global.

The approximate character of the ® rst harmonic bal-
ance is well known. However, the error of the approx-
imation can be analysed (Bergen et al. 1982) and any
degree of precision can be reached using higher-order
harmonics. In this last case the simplicity of the ® rst
harmonic balance is lost, but any degree of precision
can be attained. In the sequel, only the ® rst harmonic
balance will be considered, but the possibility of using
higher-order harmonics should not be rejected.

Summing up the previous results, it is easy to see that
the visual inspection of G… j!† gives clues to under-
standing the global behaviour of the system, and not
only the local behaviour around the origin. The value
of G…0† will indicate the appearance of new equilibria.
Moreover, points where G… j!† crosses the part of the
horizontal axis to the left of point …¡1 ;0† for ! > 0
generically indicate the existence of stable or unstable
limit cycles.

In the next section, the generic case of a two-dimen-
sional system will be fully analysed illustrating these
ideas. It should be remarked that this method works
for any ® nite dimension. When n > 2 the Loeb stability
criterion must be used with care by taking into account
the real part of the remaining n ¡ 2 roots of the corre-
sponding linear substitution problem (Libre and Ponce
1996).
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3. Two-dimensional systems analysis

Consider a second-order system

_x ˆ 0 1

¡a2 ¡a1
x ‡ 0

1
u ;

with a control law

u ˆ ¡Kx ˆ ¡‰k1 k2Šx:

The closed-loop system is equivalent to an unity feed-
back linear system with the open-loop transfer function

G…s† ˆ p…s†
q…s†

ˆ k1 ‡k2s
s2 ‡ a1s ‡ a2

;

and then G…0† ˆ k1=a2. The closed-loop characteristic
polynomial is

p…s† ‡ q…s† ˆ s2 ‡…a1 ‡k2†s ‡…a2 ‡k1†:
It is assumed that the control law is chosen such that the
closed-loop system is stable and satis® es some given

speci® cations. The closed-loop stability conditions are
a1 > ¡k2 and a2 > ¡k1.

Now normalized saturation is considered in the feed-
back path, to have the control system structure in
® gure 1. Then the closed-loop system can be written in
the form

_x ˆ
0 1

¡a2 ¡a1
x ¡

0

1
’…Kx†: …6†

There are four parameters …a1 ;a2 ;k1 ;k2† in the system,
but the parameters k1, and k2, further than assuring the
closed-loop stability, will be assumed positive (as usual)
and ® xed. Thus, the only parameters to be considered in
the bifurcation analysis are a1 and a2.

In ® gure 3 the shapes of the polar plots of G… j!† in the
parameter space …a1 ;a2† are displayed. To understand
how these shapes change, it is convenient to start by
computing possible intersections of G… j!† with the real
axis. Writing
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G… j!† ˆ k1 ‡ j!k2

…a2 ¡ !2† ‡ j!a1
;

it is easy to deduce that, apart from the value
G…0† ˆ k1=a2, there will be another intersection with
the horizontal axis if and only if

k1

a2 ¡ !2
ˆ k2

a1
;

and solving for !2 the condition k2a2 ¡ k1a1 > 0 is
obtained. Then, for !2 ˆ a2 ¡ k1…a1=k2†, it follows that
G… j!† ˆ k2=a1 ( ® gure 4).

Thus, the line k1a1 ˆ k2a2 divides the diagram into
two parts. According to the property just mentioned,
in the upper part the polar plot of G… j!† has, apart
from G…0†, another crossing point with the real axis.
Only in this half of the …a1 ;a2† plane could there be
solutions with ! > 0 to (5), and, therefore, limit cycles.

Figure 3 gives an overall picture of how the polar plot
of G… j!† evolves as parameters a1 and a2 are changed.
According to the shape of G… j!† there are four main
regions denoted I, II, III and IV with di� erent qualita-
tive behaviours.

In region I (subdivided into regions I1 and I3), the
system has a single attracting point, namely the origin,
and is globally stable.

In region II, there is an unstable limit cycle around the
stable origin.

In region III, there are two saddle points apart from
the stable origin and the unstable limit cycle.

In region IV, there are the stable origin and two
saddle points.

For this same case as in (6), Llibre and Sotomayor
(1996) have obtained the whole bifurcation diagram
using the qualitative theory of planar dynamical
systems. A rather good approximation to the exact
bifurcation diagram was obtained by Llibre and Ponce
(1996) using arguments similar to those developed in
this paper and it is shown in ® gure 5, where the state
portrait of the four main regions is also included. In the
boundary between regions I and II (the positive a2 axis),

a Hopf bifurcation B1 at in® nity is produced. In the
same way, the boundary between regions I and IV,
and between regions II and III, is associated with a
pitchfork bifurcation P1 at in® nity (at the a1 axis).
Finally the frontier between regions III and IV is the
line k1a1 ˆ k2a2, where a double-saddle connection
bifurcation (DSC) occurs, killing the unstable limit
cycle. This line is not the exact boundary but only its
approximation obtained by the ® rst-order describing
function techniques, and it constitutes the only quanti-
tative discrepancy with the exact bifurcation diagram
given by Llibre and Sotomayor (1996). In any case,
the boundary exists and here a l̀inearized’ part of it
has been found.

It should be emphasized that region I is the only
region where the system is both open-loop stable and
closed-loop globally stable. This leads to a concrete
illustration of the comments in the introduction
regarding the global stability problems of unstable
plants. In regions II, III and IV, where the plant is
unstable, the closed-loop system is only locally stable
(provided that k1 and k2 have been chosen to assure
the stability of the origin, as is currently assumed
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here). Obviously, this is because the system runs in an
open-loop manner when the controller saturates.

The bifurcation diagram in ® gure 5 can be reinter-
preted with the help of the polar plots of G… j!† in
each of the regions as shown in ® gure 3. To that end
an anticlockwise round trip starting from region I is
proposed. This region is subdivided by the broken line
I2 (k1a1 ˆ k2a2) in regions I1 and I3, with two di� erent
shapes for G… j!†, but in both cases giving rise to polar
plots that guarantee the global stability of the closed-
loop system (neither multiple equilibria nor limit cycles
can exist).

Entering from region I into region II through the
Hopf bifurcation B1 at in® nity causes the appearance
of an unstable limit cycle. This bifurcation is easily rein-
terpreted with the polar plots. To enter region II, the
value a1 must be decreased. As shown above, the point
where G… j!† crosses the real axis for ! 6ˆ 0 is k2=a1.
Then, as a1 tends to 0, this crossing point tends to 1.
For small values of a1 > 0, it is easy to see that G… j!†
has the shape shown in ® gure 6, where k2=a1 is the point
where G… j!† cuts the horizontal axis for some ! > 0. As
a1 tends to zero, the value of this intersection point
grows tending to in® nity, but, as a1 reaches the value
zero and becomes negative, then the shape of G… j!† of
® gure 6 changes to that in ® gure 7, k2=a1 being now
negative. So, as a1 crosses 0 and becomes negative, the
crossing point will reappear from ¡1. However, taking
a negative value, even if very large, means that the
crossing point is on the real axis cutting ¡1=N…a†, and
then giving rise to a limit cycle, which turns out to be
unstable. This is the Hopf bifurcation B1 at in® nity.
Figure 8 shows the corresponding bifurcation diagram.
For a complete description of this bifurcation see Glover
(1989) and Llibre and Ponce (1997) . Once in region II,
the shape of G… j!† is consistent with the state portrait
showing an unstable limit cycle. If one continues the journey anticlockwise, then

region III is entered. For that a2 must be decreased
and G…0† ˆ k1=a2 will tend to 1. As a2 reaches 0 and
becomes negative, G…0† comes from ¡1. But
¡1 < G…0† < ¡1 means that two unstable equilibria
will appear. Then for a2 ˆ 0 a pitchfork bifurcation
P1 at in® nity is produced. Figure 9 shows the corre-
sponding bifurcation diagram.

Now, to complete the diagram, it remains to discuss
what happens at line k1a1 ˆ k2a2 in the third quadrant.
On this line, as stated above, the morphology of the
polar plot is changed and the crossing point of the real
axis k2=a1 disappears. Then the unstable limit cycle
degenerates in one DSC, to disappear when region IV
is reached, where there are stable equilibria at the origin
and two saddle points. This DSC bifurcation is easily
interpreted with the polar plots as the coalescence of the
two points where G… j!† cuts the horizontal axis.
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Following the trip, one returns to region I through the
pitchfork bifurcation P1 at in® nity where the two
saddle points disappear, leaving the state portrait with
a single equilibrium point at the origin.

It should be recalled that the methodology applied
here is based on the ® rst-order harmonic balance and
then is only approximated. However, the main qualita-
tive aspects are retained and its application is straight-
forward for the engineer designing control systems with
classical tools.

This kind of analysis is also relevant for conventional
control design of systems showing windup problems
(Seron et al. 1995, Middleton 1996, Ponce et al. 1999).
Related research has been developed for systems with a
delay (Pagano et al. 1996, 1999) .

The above analysis is relevant to understand the e� ect
of perturbations that change the initial conditions of the
system, as is shown in the following example 1.

Example 1: Consider the system

_x ˆ 0 1

¡1 3
x ‡ 0

1
u:

A linear control law of the form u ˆ ¡Kx has
been designed to minimize the criterion J ˆ„ 1

0 …x2
1 ‡x2

2 ‡ u2† dt, obtaining k1 ˆ 0:4142 and k2 ˆ
6:2907. Suppose now additionally that the actuator satu-
rates and the control signal is bounded. Then the origin
is locally stable but, as a1 ˆ ¡3 and a2 ˆ 1 ; the system is
in region II, which implies the existence of an unstable
orbit around the origin, which gives rise to a limited
attraction basin (® gure 10). In this case, this basin is
su� ciently small that a small perturbation, applied at
the input, could make the system out of control as can
be observed in ® gure 11. Curve a shows how, in spite of

a perturbation of amplitude 0.5 applied at t ˆ 1 and
maintained for 0.75 s, the system again reaches the
origin. Curve b corresponds to a greater perturbation
of amplitude 1 of the same period, which now makes
the system out of control. Regardless of the perturba-
tion applied, the system goes out of control when the
state vector does not belong to the attraction basin once
the perturbation disappears. &
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The results reported above for the case of normalized
saturation can be easily generalized for a larger class of
nonlinear systems. For instance, Aracil et al. (1998b)
have found the same pattern of behaviours as in ® gure
5 for control systems where the plant is second-order
linear and the controller is fuzzy.

The generalization of the analysis for higher-order
linear systems is also straightforward, even if for such
cases there is not a diagram as simple and synthetic as
® gure 5 (Llibre and Ponce 1996) . However, the bound-
aries between regions of di� erent qualitative behaviours
are associated with bifurcations P1 and B1 ; like those
previously mentioned. In the next section a three-dimen-
sional will be considered.

4. Application to a three-dimensiona l system

Let us suppose that the open-loop transfer function is
given by

G…s† ˆ k1 ‡k2s
…s2 ‡a1s ‡a2†…s ‡a†

and that there is normalized saturation in the feedback
path, that is the system has the structure of ® gure 1.

The parameters k1 and k2 can be considered the pro-
portional and derivative constants of the proportional±
derivative (PD) controller designed to control the open-
loop system. The pole at s ˆ ¡a will be assumed to be
stable (a > 0).

4.1. Stability analysis

From the application of the Hurwitz criterion, the
necessary and su� cient conditions for the stability of
the linearized closed-loop system are

H1…a1 ;a2† ˆ a1 ‡ a > 0 ;

H2…a1 ;a2† ˆ …a ‡a1†…a1a ‡a2 ‡k2† ¡ …a2a ‡k1† > 0 ;

H3…a1 ;a2† ˆ a2a ‡ k1 > 0:

As shown in ® gure 12, the horizontal line a2 ˆ ¡k1=a
and one of the branches corresponding to H2…a1 ;a2† ˆ 0
form the frontier of the parameter stability region. Note
that the curve H2…a1 ;a2† ˆ 0 intersects the aforemen-
tioned horizontal line at a1 ˆ ¡a and at a1 ˆ
…k1 ¡ ak2†=a2. Therefore, the size of the parameter
stability region increases with increasing k1 and
ak2 ¡ k1 and thus it is reasonable to suppose that in a
practical control design both quantities are positive.
Thus, in the following k1 and ak2 ¡ k1 will be assumed
to be greater than zero.

In short, if a > 0 and the PD controller stabilizes the
system then the assumptions k1 > 0, ak2 ¡ k1 > 0 and
a ‡a1 > 0 will be satis® ed in most control designs. Also,
the value of k2 will be assumed to be less than a2 as
typically occurs when a is large enough (for instance,
when it is associated with a high-frequency component) .
In what follows, the bifurcation diagram under these
general assumptions will be obtained using the same
ideas already employed for the two-dimensional case.

4.2. Equilibrium points

In this case, G…0† is equal to k1=a2a ; so there will be
more than one equilibrium point if k1=a2a < ¡1. Under
the assumption of closed-loop stability, this occurs only
for negative a2. Therefore, at a2 ˆ 0 there is a change in
the number of equilibria, which in fact corresponds to a
pitchfork bifurcation at the in® nity.

4.3. Solution of the harmonic balance equation

Some algebraic manipulations show that, in the
parameter stability region and under the above-men-
tioned condition k2 < a2, the polar plot of G… j!† crosses
the real axis at the frequency

!2
c ˆ k2a2a ¡ k1…a2 ‡ a1a†

k2…a1 ‡a† ¡ k1
:

The denominator k2…a1 ‡a† ¡ k1 is positive for all the
regions of stability provided that the hypothesis k2 < a2

is satis® ed. E� ectively, the minimum value of this
denominator is reached at the vertex of the stability
region, where a1 ˆ …k1 ¡ k2a†=a2. For that value of a1,
one obtains

k2…a1 ‡a† ¡ k1 ˆ k2
k1 ¡ ak2

a2 ‡a… †¡ k1

ˆ …ak2 ¡ k1† 1 ¡
k2

a2… † > 0:
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Thus, the line k2a2a ¡ k1…a2 ‡ a1a† ˆ 0 divides the sta-
bility region into two parts. Note that this line contains
the origin …a1 ;a2† ˆ …0 ;0†, and the vertex of the stability
region …a1 ;a2† ˆ ……k1 ¡ ak2†=a2 ;¡k1=a† ( ® gure 13). In
the region that lies above the line, the polar plot crosses
the real axis. In the region under the line, there is no
frequency ! > 0 such that the polar plots intersects the
real axis.

As was seen for the two-dimensional system, a1 ˆ 0
corresponds to a Hopf bifurcation at in® nity. Therefore,
the axis …a1 ˆ 0† divides the stability region that is over
the line k2a2a ¡ k1…a2 ‡a1a† ˆ 0 into two regions. In
the region placed to the left of the vertical axis and
over the line, the polar plot of G… j!† crosses the real
axis at the left of the point …¡1 ;0†, which according to
the describing function method may reveal the existence
of a limit cycle.

In ® gure 13, it is shown how the stability region is
divided into the four regions I, II, III and IV, at which
polar plots of G… j!† exhibit the same morphology as in
regions I, II, III and IV of the two-dimensional system
(® gure 5). This is due to the above natural parameter
restrictions, which assure that there exists at most one
intersection between the polar plot of G… j!† and the real
axis, for ! > 0.

5. Conclusions

A global perspective on the behaviour modes of control
systems with saturation has been presented. This global
perspective has been reached mainly using graphical fre-
quency-domain tools. It has been shown how,
depending on the polar plot of the open-loop transfer
function G… j!†, the existence and stability of multiple
equilibrium points and of limit cycles can be studied.

In isolation, these are well-known results, but here the
bifurcation analysis framework has helped to integrate
them into a uni® ed conceptual scheme. Bifurcations
have been shown to give rise to the boundaries of par-
ameter regions with di� erent qualitative behaviours.

The full morphology of polar plots has been displayed
for two-dimensional systems and a classi® cation of the
di� erent behaviour modes of the nonlinear system has
been reached. The same morphology has been found for
a three-dimensional system with some reasonable
assumptions on the parameter values. All this has been
done using mainly frequency domain plots of the open-
loop system, as in classical control methods.

Some attention has been addressed to the case of
control of unstable plants with saturating controllers.
It has been shown that even simple unstable plants
with a saturating controller can give rise to global prob-
lems. These problems appear because the controller is
designed to work well at the operating point, but for
nonlinear systems this stability is only guaranteed
around this point. Then the system is locally stable
around the operating point but is not globally stable,
so that large enough perturbations can lead it out of
control. The moral is that in dealing with nonlinear
systems one cannot avoid to tackling with global prob-
lems. This stresses the interest of global analysis of non-
linear control systems.
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